
Semantic Importance Sampling for Statistical
Model Checking?

Jeffery P. Hansen, Lutz Wrage, Sagar Chaki, Dionisio de Niz, and Mark Klein

Carnegie Mellon University, Pittsburgh, PA, USA
{jhansen,lwrage,chaki,dio,mk}@sei.cmu.edu

Abstract. Statistical Model Checking (SMC) is a technique, based on
Monte-Carlo simulations, for computing the bounded probability that a
specific event occurs during a stochastic system’s execution. Estimating
the probability of a “rare” event accurately with SMC requires many
simulations. To this end, Importance Sampling (IS) is used to reduce the
simulation effort. Commonly, IS involves “tilting” the parameters of the
original input distribution, which is ineffective if the set of inputs causing
the event (i.e., input-event region) is disjoint. In this paper, we propose
a technique called Semantic Importance Sampling (SIS) to address this
challenge. Using an SMT solver, SIS recursively constructs an abstract
indicator function that over-approximates the input-event region, and
then uses this abstract indicator function to perform SMC with IS. By
using abstraction and SMT solving, SIS thus exposes a new connection
between the verification of non-deterministic and stochastic systems. We
also propose two optimizations that reduce the SMT solving cost of SIS
significantly. Finally, we implement SIS and validate it on several prob-
lems. Our results indicate that SIS reduces simulation effort by multiple
orders of magnitude even in systems with disjoint input-event regions.

1 Introduction

As systems become more complex, there is a growing demand for efficient and
precise techniques to verify correctness of their behavior. In this paper, we target
a common probabilistic verification problem – estimating the probability of an
event Φ (e.g., some sort of failure) during the execution of a system M that
takes stochastic inputs (e.g., sensor readings, task execution times, etc.) Analytic
solutions to this problem (e.g., probabilistic model checking, see Section 2) do
not scale to many real-world systems due to complexity. We focus on an alternate
approach called Statistical Model Checking (SMC) [16], which relies on Monte-
Carlo-based simulations to solve this verification task more scalably.

? This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0002083



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
16 JAN 2015 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
    

4. TITLE AND SUBTITLE 
Semantic Importance Sampling for Statistical 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Kein /Jeffery Hansen Lutz Wrage Sagar Chaki Dionisio de Niz Mark 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited. 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

SAR 

18. NUMBER
OF PAGES 

15 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1. INTRODUCTION
Hansen, et. al.

𝑥 

𝑓(𝑥) 

0 10 2 4 6 8 

𝑥Φ 

(𝑎) 

𝑥 

𝑔(𝑥) 

0 10 

0.125 

2 4 6 8 

(𝑏) 

𝑥 

𝑔∗(𝑥) 

0 10 

0.25 

2 4 6 8 

(𝑐) 

0.1 

Fig. 1. Example of SIS; f = original input distribution; g = tilted distribution; g∗ =
distribution produced by SIS.

SMC produces two results – the estimate p̂ of the probability p of Φ and a
measure e of precision of p̂. The key challenge in simulation-based approaches is
“simulation explosion” – the number of simulations required to achieve a high e
becomes prohibitively large if p is small (i.e., Φ is rare). Importance Sampling [11,
14] (IS) has been shown to address this challenge. Suppose the random input x
to M has distribution f . In IS, we first perform SMC under a different input
distribution g that makes Φ more likely (i.e., increases p), and then adjust the
result back to f .

Traditionally, importance Sampling is implemented by “tilting” the parame-
ters of the input distributions to increase the likelihood of Φ. However, tilting is
less effective if the set of inputs that cause Φ, i.e., the input-event region denoted
xΦ, is disjoint. For instance, this happens when analyzing a program where Φ
only occurs if the execution follows one of several control-flow paths, each trig-
gered by a distinct input range. Figure 1(a) shows such a case. The actual input
distribution f is uniform in the range [0, 10], and xΦ = [2.99, 3.01] ∪ [6.99, 7.01].
Figure 1(b) shows a tilted distribution g uniform in the range [2, 10]. While g
makes Φ more likely than f , it still assigns positive weight to large parts – e.g.,
(3.01, 6.99) – of the input space that do not belong to xΦ.

In this paper, we address this challenge, and make three specific contribu-
tions. First, we develop a new technique to construct more precise input distribu-
tions for IS – such as g∗ shown in Figure 1(c) – even when the input-event region
is disjoint. This technique, which we call Semantic Importance Sampling (SIS),
takes as input a description of M and f , and recursively computes a precise
“over-approximation” of xΦ in the form of an abstract indicator function (AIF).
In each step of the recursion, SIS constructs a verification condition using M
and f and checks its satisfiability with an SMT solver to eliminate parts of the
input space that are not in xΦ. The algorithm outputs an AIF represented by a
set of “input cubes”, i.e., a disjunction of intervals [7] over the input variables
of M. Subsequently, SIS uses the AIF to construct a precise input distribution,
and perform SMC with IS. By using the semantics of M, SIS successfully ap-
plies concepts and techniques used widely in the verification of non-deterministic
systems (such as abstraction, SMT solving, and verification conditions) to the
analysis of stochastic systems. In this way, SIS builds new bridges between these
two disciplines.

2



Hansen, et. al.

2. RELATED WORK

The most expensive component of SIS are the calls to the SMT solver. Our
second contribution is two optimizations to SIS that reduce the number of SMT
calls while maintaining correctness. Finally, we implement SIS in a tool called
osmosis and use it to verify a number of stochastic systems with rare events. Our
results indicate that SIS reduces the number of simulations significantly, in some
cases by a factor of over 600, and verification time by an order of magnitude or
more. Furthermore, our optimizations reduce both the number of SMT calls and
overall SMT solving time, typically by a factor of 2. All our tools and examples
are available at andrew.cmu.edu/~schaki/misc/osmosis.zip.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 presents background definitions and concepts. Section 4 presents SIS,
and Section 5 presents our tool osmosis. In Section 6, we present our experiments
and results, and in Section 7, we conclude.

2 Related Work

Probabilistic model checking [15] (PMC) is an automated, algorithmic approach
for computing numerical properties of stochastic systems. In PMC, the system
is modeled as a finite state probabilistic automaton, e.g., a discrete time Markov
chain (DTMC), a continuous time Markov chain (CTMC), or a Markov decision
process (MDP) which is exhaustively explored in the analysis. The property is
expressed as formula in a temporal logic, e.g., probabilistic Computation Tree
Logic (PCTL) [8]. Verification consists of exhaustive exploration of the states-
pace to construct equations which are then solved numerically. In contrast, we
follow the SMC approach, which is based on Monte-Carlo simulations. An ex-
cellent comparison between PMC and SMC is provided by Younes et al. [17].

When SMC was first proposed [16], the emphasis was on hypothesis testing.
More recently, an estimation approach [2] has been taken in which the goal is to
estimate the probability that a system property holds. SMC has been applied to
a wide variety of systems, such as stochastic hybrid automata [4], and real time
systems [5]. In addition to importance sampling, SMC can also be improved by
a method known as “importance splitting” [10].

Importance sampling[14], upon which our approach is based, has been known
in the statistics literature since the 1940s[11] and has recently come to the atten-
tion of the SMC community[3]. Approaches proposed to finding the importance
sampling bias function include Cross-Entropy Method[2, 9] and Coupling [1].

Luckow et al. [12] have developed techniques for exact and approximate anal-
ysis of stochastic systems with non-determinism. They use symbolic execution
and learning to iteratively construct schedulers under which worst-case (or best-
case) behavior of the system is observed. This approach can be seen as an ex-
tension of statistical model checking to concurrent systems. They do not use
importance sampling, and could use techniques like ours to improve handling of
rare events.

Borges et al., [13] proposes a technique for estimating failure probabilities in
software based on stratified sampling. Their technique differs from ours in that

3



3. BACKGROUND
Hansen, et. al.

they partition the input space based on path conditions in the model, whereas
we use an approach that modifies the input distribution.

3 Background

Consider a system M with finite vector of random inputs x. Assume that M is
deterministic, i.e., its behavior is fixed for a fixed value of x. The SMC problem
is to estimate the probability that M satisfies a property Φ, denoted M |= Φ,
given a joint probability distribution f on x, i.e., to estimate p = Pr[M |= Φ].
We assume that whetherM |= Φ under input x can be determined by simulating
M for finite time. Specifically, we assume that M is a program that terminates
under all inputs, and M |= Φ under input x iff the execution of M under input
x violates an assertion (representing a desired safety property) in M.

Let us write x∼ f to mean x is distributed by f . SMC involves a series of
Bernoulli trials, modeling each trial as a Bernoulli random variable having value
1 with probability p, and 0 with probability 1 − p. For each trial i, a random
vector xi ∼ f is generated, and the system M is simulated with input xi to
generate a trace σi. The trial’s outcome is 1 if Φ holds on σi, and 0 otherwise.

Define an indicator function IM|=Φ : x → {0, 1} that returns 1 if M |= Φ
under input x, and 0 otherwise. Then, when x∼f , the probability that M |= Φ
holds will be p = E[IM|=Φ(x)] =

∫
IM|=Φ(x)f(x)dx which can be estimated as:

p̂ =

N∑
i=1

IM|=Φ(xi) (1)

where N is the number of trials and xi ∼ f . We will refer to this estimator as
the Crude Monte-Carlo (CMC) estimator. The precision of p̂ is quantified by its

“relative error” RE(p̂) =

√
Var(p̂)

E[p̂] where Var(p̂) is the variance of the estimator.

It is known[2] that for Bernoulli trials, relative error is related to the number of
trials N and the probability of the event p as:

RE(p̂) =

√
1− p
pN

≈ 1√
pN

N =
1− p

pRE2(p̂)
≈ 1

pRE2(p̂)
(2)

Importance Sampling. From (2) we see that the number of simulations
needed to achieve a fixed precision with SMC increases rapidly as the target
event becomes rarer. Importance Sampling [14] (IS) has been applied [2] to
address this challenge effectively by reducing Var(p̂). The key idea behind IS is
to first simulateM under a different input distribution g to reduce the variance
of the estimator, and then mathematically adjust the result back to the original
distribution f as:

p =

∫
IM|=Φ(x)

f(x)

g(x)
g(x)dx =

∫
IM|=Φ(x)W (x)g(x)dx (3)

4



Hansen, et. al.

4. SEMANTIC IMPORTANCE SAMPLING

where W : x→ f(x)
g(x) is a weight function. The estimator for this form is:

p̂ =

N∑
i=1

IM|=Φ(xi)W (xi) (4)

where the xi ∼ g. The biggest challenge in applying IS effectively is choosing
a “good” g that will reduce Var(p̂). Typically this is done by “tilting” f by
changing its distribution parameters (mean, variance etc.) However, as discussed,
tilting is not effective if Φ is disjoint in the input space. In effect, SIS constructs
a good g even in such cases. We describe SIS in detail in the next section.

4 Semantic Importance Sampling

To explain SIS, we begin with a known result [2] that there always exists an
optimal IS distribution:

g�(x) =
IM|=Φ(x)f(x)

p
(5)

for which Var(p̂) = 0, i.e., if IS is done with g = g�, then a single sample is
sufficient to compute p̂. However, there are two challenges to using g� for IS: (i)
g� depends on p, the answer we are actually looking for; and (ii) g� also depends
on the indicator function IM|=Φ, but since this function representsM |= Φ itself,
it may be too complex to represent analytically.

The key insight behind SIS is to construct an abstract indicator function
(AIF) I∗M|=Φ : x → {0, 1} such that: (i) ∀x IM|=Φ(x) = 1 ⇒ I∗M|=Φ(x) = 1; and

(ii) I∗M|=Φ is simple enough to represent analytically. Note that {x | I∗M|=Φ(x) =

1} is an over-approximation of the set of inputs under which M |= Φ. This AIF
induces the following IS distribution and weight function:

g∗(x) =
I∗M|=Φ(x)f(x)

p∗
(6)

W ∗(x) =
f(x)

g∗(x)
=

f(x)p∗

I∗M|=Φ(x)f(x)
=

p∗

I∗M|=Φ(x)
(7)

where p∗ = E[I∗M|=Φ(x)] is the probability that for an input x∼f , I∗M|=Φ(x) = 1.
Note that as the function I∗M|=Φ approaches IM|=Φ, g∗ also approaches g�. In
the limit, I∗M|=Φ = IM|=Φ implies g∗ = g�.

Probability Estimation and Relative Error in SIS. Substituting W ∗(x)
from (7) into (4), we get the SIS estimator for p = E[IM|=Φ(x)] given x∼f as:

p̂ =
1

N

N∑
i=1

IM|=Φ(xi)W
∗(xi) =

1

N

N∑
i=1

IM|=Φ(xi)
p∗

I∗M|=Φ(xi)
(8)

with xi ∼ g∗ used in this importance sampled estimator. Note from (6) that
I∗M|=Φ(xi) is always 1 when xi ∼ g∗, thus this term can be dropped from the

5



4. SEMANTIC IMPORTANCE SAMPLING
Hansen, et. al.

summation. Also, since p∗ is a constant (8) simplifies to:

p̂ =
p∗

N

N∑
i=1

IM|=Φ(xi) (9)

This can be split into a raw part and a scalar part as p̂ = p∗ × p̂raw, where:

p̂raw =
1

N

N∑
i=1

IM|=Φ(xi) (10)

Since p̂raw is an unweighted average of Bernoulli random variables, its relative
error can be estimated [2] as:

RE(p̂raw) ≈ 1√
prawN

(11)

Furthermore, since p̂ = p∗ × p̂raw, and p∗ is a constant, the relative error for p̂
is the same as the relative error of p̂raw, i.e., RE(p̂) = RE(p̂raw).

4.1 The SIS Algorithm

The SIS algorithm involves the following steps:

1. Recursively construct the AIF I∗M|=Φ.
2. Calculate p∗.
3. Use SMC to estimate p̂raw with desired RE(p̂) = RE(p̂raw), using I∗M|=Φ

to draw random inputs from g∗. Output p̂ = p∗ × p̂raw.

The core of SIS is Step 1, the generation of the AIF. We describe this in
the following sections by first discussing our representation of the AIF, then
describing the recursive algorithm.

AIF as a Cube Set. We assume that the input x to M is a vector of
M independent1, but not necessarily identically distributed random variables.
For each dimension xj in x, let Fj be the Cumulative Distribution Function
(CDF), F−1j be the inverse CDF (or quantile function), and uj = Fj(xj) be
the quantile domain variable. Now let ξ be an M -dimensional axis-aligned input
domain hypercube defining an interval [lj , hj ] on each input variable xj for 1 ≤
j ≤ M . We also define the quantile domain hypercube c defined by the ranges
[Fj(lj), Fj(hj)] for each dimension. We use the notation c = F (ξ) and ξ = F−1(c)
to transform cubes between the input and quantile domains. We will use the
terms input cube and quantile cube to refer to cubes in the input and quantile
domains, respectively. When the term cube is used without qualification we will
assume quantile cubes. We can now represent the AIF in terms of a quantile
cube set C∗ as:

I∗M|=Φ(x) =

{
1 if ∃c ∈ C∗ | F (x) ∈ c
0 otherwise

(12)

1 Non-independent random inputs y are replaced by a function h(x) of independent
random variables x, which is folded into IM|=Φ(y) to yield IM|=Φ(h(x)).

6



Hansen, et. al.

4. SEMANTIC IMPORTANCE SAMPLING

(1) CubeSet aifGen(SMT ϕ,Cube c)
(2) {
(3) if (Solve(ϕ, F−1(c)) == UNSAT) return ∅;
(4) if (level(c) == Lmax) return {c};
(5) int j = (level(c)/G) % M;

(6) Cube c0 = c/j; Cube c1 = c/j;
(7) return aifGen(ϕ, c0) ∪ aifGen(ϕ, c1);
(8) }

Fig. 2. Basic AIF Generation Algorithm; G=variable grouping factor, M=number of
inputs, Lmax=recursion depth limit, Solve = satisfiability check via SMT solver.

where (∀x IM|=Φ(x) = 1) ⇒ (∃c ∈ C∗|F (x) ∈ c) (i.e., all inputs where M |= Φ
holds are covered by some cube in C∗).

Cube Splitting. Let ξU be the input cube defining the support of the input
distribution function f . The corresponding quantile domain cube cU = F (ξU )
will have a range of [0, 1] on each dimension. We call this the level-0 cube. We
write c/j to mean the cube formed by splitting the interval on uj in c in half, and
retaining only the upper half. Similarly, c/j is the result of a similar operation
where the lower half of the interval is retained. Note that we can split on the
same variable multiple times. A level-k cube is the result of k splits on the level-0
cube. For example if cU is the level-0 cube, then cU/1/1 is the level-2 cube in
which the interval for u1 is [0.5, 0.75]. After each split, the probability that an
input drawn from f falls in the result is halved. Thus, the probability of an input
drawn from f falling in a level-k cube is 1

2k
.

Recursive AIF Construction. Generation of the AIF I∗M|=Φ is performed
recursively through the hierarchical use of an SMT solver. The basic algorithm
aifGen is shown in Figure 2. It takes as input the SMT representation ϕ of the
indicator function IM|=Φ(x), and the input cube c over which to generate an
abstraction. It is assumed that ϕ is constructed so as to be SAT for inputs x iff
IM|=Φ(x) = 1. Constant Lmax is the maximum recursion depth. aifGen returns
the subset of level-Lmax cubes in C∗ within cube c. C∗ representing the AIF
as defined in (12) can then be determined by calling aifGen, and passing the
level-0 cube cU as c.

The algorithm works as follows. At Line 3, the SMT solver is applied to
the model ϕ over the cube ξ = F−1(c). The cube is applied to the model by
modifying the assertions in the model corresponding to the intervals on the input
variables. The SMT solver can return SAT, UNSAT or UNKNOWN (e.g., if it
times out). If the result is UNSAT, then M |= Φ does not hold in the input
space described by c, and so it returns the empty set. If the result is SAT or
UNKNOWN, we continue with the rest of the algorithm. While an UNKNOWN
result will reduce the efficiency of the algorithm, the result will still be sound.

At Line 4, the level of the current cube c is checked against the specified
maximum recursion depth Lmax. If we are at that maximum recursion depth, we
simply return the set containing just the cube c.

At Line 5, we choose an input variable index on which to split the cur-
rent cube. In our current implementation, we simply cycle through the variables

7



4. SEMANTIC IMPORTANCE SAMPLING
Hansen, et. al.

round-robin by using the current level modulo the total number of input vari-
ables M . Integer division by a variable grouping factor G allows us to choose the
same variable G levels in a row before moving to the next variable. It is possible
that other methods of choosing the splitting order may lead to more efficient
abstractions, however we have not yet explored this area.

At Lines 6-7, we split the cube c around the selected variable uj forming the
cubes c0, and c1 for the lower and upper half of the CDF interval on variable uj
in c. We then recursively call the generation algorithm on those two sub-cubes
and return the union of the cube sets returned by each call.

Calculation of p∗. Recall that p∗ = E[I∗M|=Φ(x)] given x ∼ f . Since: (i)

all cubes in the set C∗ returned by aifGen are level-Lmax, (ii) they are non-
overlapping, (iii) there are 2Lmax level-Lmax cubes, and (iv) each cube covers
equal probability in f , then p∗ can be calculated from the ratio of the number
of cubes in C∗ to the total number of level-Lmax cubes as:

p∗ =
|C∗|

2Lmax
(13)

4.2 Optimized AIF Generation

The most expensive component of aifGen are the calls to Solve. We now present
two optimizations that can reduce the number of calls.

Optimization 1: Skip on UNSAT. Consider the algorithm in Figure 2.
Notice that at the point where we split the cube at Line 6, we already know
that cube c is not UNSAT. The means that if one of the child cubes c0 or c1
is UNSAT, the other one must be SAT2. To take advantage of this, we modify
the algorithm to take an additional boolean argument assumeSAT indicating we
should skip the call to Solve and assume it returns SAT when assumeSAT is
true. Then we make the first recursive call on c0 with assumeSAT set to false. If
this call returns the empty set, then the result for that half was UNSAT, and
we pass true for assumeSAT when making the recursive call on c1, otherwise we
make the recursive call with assumeSAT set to false and execute Solve as normal.

Optimization 2: Counter-Example Reuse. A second optimization is
possible by making use of the counter-example returned by Solve when the
result is SAT. In this case, we assume that Solve returns, as counter-example,
a cube ξd containing a satisfying solution. We convert ξd to a quantile cube
cd = F (ξd). If cd is completely contained by one of the child cubes in the recursive
call, we can skip the call to Solve for that call. We require cd to be completely
contained since the counter-example cube ξd returned by Solve is a cube in
which there exists a solution to the SMT formula, but not all points in the
cube are necessarily a solution. In most cases cd will be contained by one or the
other of the child cubes in the recursive calls, but it is possible that cd could
fall on an edge and thus not be applicable to either recursive call. In this case,
it is still possible that Optimization 1 can apply. We assume that Solve will

2 It could be UNKNOWN if result from cube c is UNKNOWN, but without loss of
soundness we treat an UNKNOWN as SAT for the purpose of this optimization.

8



Hansen, et. al.

4. SEMANTIC IMPORTANCE SAMPLING

(1) CubeSet aifGen(SMT I,Cube c,boolean assumeSAT,Cube cd)
(2) {
(3) if (!assumeSAT && cd != ∅ && !(cd ⊆ c)) {
(4) if (Solve(I, F−1(c), &xid) == UNSAT) return ∅;
(5) cd = F (ξd);
(6) }
(7) if (level(c) == Lmax) return {c};
(8) int j = (level(c)/G) % M;

(9) Cube c0 = c/j; Cube c1 = c/j;
(10) CubeSet s0 = aifGen(I, c0, false, cd);
(11) CubeSet s1 = ∅;
(12) if (s0 == ∅) s1 = aifGen(I, c1, true, cd);
(13) else s1 = aifGen(I, c1, false, cd);
(14) return s0 ∪ s1;
(15) }

Fig. 3. Optimized Abstract Indicator Function (AIF) Generation Algorithm;
G=variable grouping factor, M=number of input, Lmax=recursion depth limit.

return the empty cube ∅ when the result is UNKNOWN which will suppress
use of this optimization for the child invocations. It can be shown that if there
are k calls to Solve without this optimization, that there will be

⌊
k
2

⌋
+ 1 with

this optimization as long as: (i) Solve never returns UNKNOWN, and (ii) the
counter-example cd returned by Solve always falls in one of the two sub-cubes.
This sets an upper bound of 1/2 on the amount by which calls to Solve can be
reduced.

Optimized AIF Generation Algorithm. Figure 3 shows the fully opti-
mized abstract indicator function incorporating both of the optimizations dis-
cussed above. Line 3 tests for conditions that allow us to skip the SMT check.
In the case that we are skipping a check, we can pass the existing cd to the child
recursive calls since it may apply to one of those calls as well. When doing the
SMT check with Solve at Line 4, we include an additional return parameter ξd
in which the counter-example cube is returned. We assume that the empty cube
∅ is returned if the result is not SAT. At Line 5 we convert the input cube ξd
to a quantile cube cd. Lines 12 to 13 implement Optimization 1. If s0 = ∅, then
the result of the test for c0 was UNSAT and we can assume that the test for c1
will be SAT.

4.3 Statistical Model Checking

After generating the AIF I∗M|=Φ, and computing p∗ with (13), the last step in
SIS is the actual SMC. As previously mentioned, we draw samples from the
distribution g∗ as defined in (6), then use (10) to estimate the raw probability
p̂raw and scale this by p∗.

Random Input Generation. To generate a random input from g∗, we rec-
ognize that this is the equivalent of generating an input x from f and accepting
only those for which I∗M|=Φ(x) = 1. We do this by first randomly selecting a
cube c from C∗ with uniform probability since each cube has equal probability

9



5. OSMOSIS
Hansen, et. al.

.c model 

SMT2 

Prob. 
dists 

Dynamic 
Exec (.so) 

gcc 

Verification 
Cond. Gen. 

Syntactic 
Extraction 

𝑰∗(𝑥 ) 
dReal 

+ Refinement 
𝒑∗ 

|𝑪∗|

𝟐𝑳𝒎𝒂𝒙
 

𝒑 𝒓𝒂𝒘, 𝑹𝑬  Monte-Carlo 𝒑 , 𝑹𝑬  

Fig. 4. Architecture of osmosis Tool.

of containing a sample drawn from f . We then choose a uniform vector u ∈ c
and use the inverse CDF to generate the input vector as x = F−1(u).

No. Of Samples. From (2), the number of samples N∗ needed to estimate
p̂raw is:

N∗ =
1− praw

prawRE2(p̂raw)
=

1− p/p∗

p/p∗RE2(p̂raw)
(14)

From (9), we know that RE(p̂) = RE(p̂raw). Assuming small p and p∗ � p, the
speedup due to SIS can be estimated as:

N

N∗
=

1−p
pRE2(p̂)

1−p/p∗
p/p∗RE2(p̂raw)

=
1− p
p∗ − p

≈ 1

p∗
(15)

5 Osmosis

We implemented SIS in a tool called osmosis. The input to osmosis is a descrip-
tion of M in an annotated version of C, with the target property Φ defined as
ASSERT() statements. osmosis calculates the probability of an ASSERT() failure
via SIS, using dReal[6] as the back-end SMT solver.

Osmosis Architecture. Figure 4 shows the architecture of osmosis. The
input model is processed by: (i) gcc to generate a dynamic executable; (ii) a
syntactic extractor which looks for //@dist declarations to determine the input
space and distributions; and (iii) a verification condition generator that generates
an SMT formula corresponding to the C model. Then aifGen (from Figure 2 or
Figure 3) is used to build the AIF I∗M|=Φ. This AIF is used to calculate p∗, and
in conjunction with the dynamically loaded executable for M to estimate p̂raw
and RE(p̂raw). Finally, p̂ is calculated using p∗ and p̂raw.

Osmosis Input Format. Figure 5(a) shows an example osmosis input
model. The annotations at Lines 4 and 5 indicate the inputs to the model. Line
4 defines a random input named “a” with a uniform distribution between 0 and
5. Line 5 defines a random input named “b” with a normal distribution with
mean 3, standard deviation 1 which has been censored to be between 0 and 5.
Where appropriate, we refer to the model input collectively as the vector x.

There are two special functions/macros in osmosis models: (i) ASSERT()

defines a condition that is expected to be true; and (ii) INPUT_D() accesses a

10



Hansen, et. al.

5. OSMOSIS

(1) #include "osmosis_model.h"
(2)
(3)
(4) //@dist a=uniform(min=0,max=5)
(5) //@dist b=normal(mean=3,std=1,

min=0,max=5)
(6) void model()
(7) {
(8) double a = INPUT_D("a");
(9) double b = INPUT_D("b");
(10) double c = a + b;
(11) double d = (a - b)/2.0;
(12)
(13) ASSERT(sin(c)*cos(d) <= 0.999);
(14) }

(1) (set-logic QF_NRA)
(2) (declare-fun a () Real)
(3) (declare-fun b () Real)
(4) (declare-fun a_1 () Real)
(5) (declare-fun b_1 () Real)
(6) (declare-fun c_1 () Real)
(7) (declare-fun d_1 () Real)
(8) (assert (>= a 0))
(9) (assert (<= a 5))
(10) (assert (>= b 0))
(11) (assert (<= b 5))
(12) (assert (= a_1 a))
(13) (assert (= b_1 b))
(14) (assert (= c_1 (+ a_1 b_1)))
(15) (assert (= d_1 (/ (- a_1 b_1) 2)))
(16) (assert (not (<= (* (sin c_1)

(cos d_1)) 0.999)))
(17) (check-sat)
(18) (exit)

(a) (b)

if (a > b)
a = cos(a*b);

(assert (= _C1 (> a_1 b_1)))
(assert (or (not _C1) (= a_2 (cos (* a_1 b_1)))))
(assert (or _C1 (= a_2 a_1)))

(c) (d)

Fig. 5. (a) osmosis Input Example; (b) SMT for osmosis Input Example; (c) a con-
ditional statement; and (d) its translation to SMT.

random input declared in an annotation. The suffix _D on INPUT_D() indicates
the return type of double. In Figure 5(a), Lines 8 and 9 access inputs “a” and
“b” and place them in C variables also named “a” and “b”. Some computations
are performed on lines 10 and 11, then finally an assertion is made on Line 13.
The #include on Line 1, allows the model include the special osmosis functions
to be compiled by a standard compiler such as gcc for use in the SMC phase.

SMT Generation. In order to implement Solve, osmosis translates the
C model into a verification condition represented as an SMT formula ϕ, which
is in essence, a representation of the indicator function IM|=Φ, i.e., any input
value x satisfies ϕ iff IM|=Φ(x) = 1. In constructing ϕ, stochastic inputs defined
by the //@dist annotations in the C model use the same variable name as the
declaration. The model is also converted to single-static-assignment form so that
each local variable is assigned once. A generation number is appended to each
variable name and is incremented for each assignment to that variable.

Conditional (if) statements are translated by generating a variable for the
condition, then translating both branches as consequences of implications of the
condition, or the compliment of the condition. If there are differing numbers
of assignments to a variable in the branches, then an additional assertion is
added to reconcile the generation numbers of the variables. For example, the
C statement in Figure 5(c) generates the SMT assertions in Figure 5(d). Loop
(while and for) statements are unrolled and must include an annotation to
indicate the maximum loop count. Note that the construction of ϕ is effective
and linear in the size of the model.

Finally, ASSERT() conditions are negated since we are interested in testing
if there are any inputs that can result in an assertion failure. All ASSERT()

11



6. RESULTS
Hansen, et. al.

statements are merged into a single SMT assertion comprised of a disjunction
of the compliments of the expressions in the C input model.

Figure 5(b) shows the ϕ generated from the M given in Figure 5(a). Line
8 through 11 define the intervals in the stochastic inputs. Lines 12 and 13 are
the assignments from the stochastic inputs to the local C variables from Lines
8 and 9 of the input model. Lines 14 and 15 correspond to the local variables
assignments in Lines 10 and 11 of the C model. Finally, Line 16 is derived from
the ASSERT() statement on Line 13 of the C model.

Monte-Carlo Simulation. The final step of osmosis is Monte-Carlo simu-
lation to estimate p̂raw using (10). Each Bernoulli trial in this simulation is con-
ducted by directly executing the dynamically loadable executable of the model.
The model source file is compiled by gcc, dynamically loaded, then repeatedly
called for each trial. Before each execution a random vector x∼g∗ is generated
as described above and used to initialize a global array. A global flag variable
indicating success/failure is also cleared. The function INPUT_D() indexes and re-
turns a value from the input array. The ASSERT() statement tests the condition,
and if the condition fails it sets the global flag to true and returns. Success or
failure of the trial is recorded based on the value of the flag variable. Trials result-
ing in an ASSERT() fail correspond to inputs xi where IM|=Φ(xi) = 1, and those
where the ASSERT() does not fail correspond to inputs where IM|=Φ(xi) = 0.
Trials are conducted until a target relative error is met.

6 Results

To evaluate our technique, we tried osmosis on the following problems:

simple The example problem from Figure 5a.
hockey An air hockey puck is given a random impulse from a random direction.

We test if it stops on a target after zero or more bounces.
backoff An exponential backoff problem in which two senders attempt up to 3

communications. Failure occurs if transmission for either exceeds a deadline.
bounce A ball is launched at a random initial angle and velocity. We test if it

falls in a small hole after potentially bouncing a number of times.

Each of these problems has the characteristic that the failure region is disjoint
in the input space. For example, in the hockey problem there are multiple paths
by which the puck can reach the target. All experiments were performed under
Linux Ubuntu 12.04 on a 2.2GHz Intel Core i7 machine with 16 Gb of RAM.
We used a 60 second timeout for each call to dReal (after which it returns
UNKNOWN). However, we experienced no timeouts on any of our test problems.

Table 1 shows the results for AIF generation. For each example, we adjust
the recursion depth limit and the variable grouping factor (number of successive
times each input is split while recursing). We used a larger G for the “backoff”
example because we observed that a higher G improves performance for models
with many inputs. Recall from (15) that 1/p∗ is an estimate for the expected
speedup N

N∗ of SIS versus Crude Monte-Carlo (CMC). Note that while we use
Lmax to limit the recursion depth while generating the AIF, a breadth-first

12



Hansen, et. al.

6. RESULTS

dReal Calls Time
Name In Lmax/G p∗ 1/p∗ none 1 2 1+2 none 1+2

simple 2
10/1 5.859× 10−3 169 49 38 26 26 0.15 0.1
12/1 2.197× 10−3 455 73 57 40 40 0.21 0.1

hockey 2
10/1 3.516× 10−2 28.4 255 213 142 137 315 228
12/1 1.148× 10−2 87.1 391 328 214 211 364 255

backoff 6
10/4 1.797× 10−1 5.6 479 451 240 240 33 14
12/4 1.797× 10−1 5.6 1583 1551 792 792 61 28

bounce 2
10/1 2.997× 10−2 33 117 86 59 59 91 53
12/1 1.221× 10−2 81 221 163 111 111 150 84

Table 1. AIF Generation Results; In=number of inputs; Lmax=recursion depth limit;
G=variable grouping factor, Time=generation time in seconds; none, 1, 2 and 1+2
indicate which optimizations were used.

implementation of aifGen could potentially use p∗, terminating when we have
achieved a sufficient gain, or when there is insufficient improvement from one
level to the next. The four columns under “dReal Calls” show the number of
calls that were made to dReal using no optimization, using Optimization 1 only,
using Optimization 2 only and using both optimizations (see Section 4.2).

We see that both optimizations are effective at reducing the number of calls,
but that Optimization 2 performs better, reducing the number of calls as well as
total SMT solving time by half in most cases. Also, while there is some benefit to
using both optimizations together, the additional advantage is relatively small.
This is because when using both optimizations together, Optimization 1 can only
be applied when the counter-example employed by Optimization 2 falls on a cube
boundary, or when analysis of a parent cube timed out and is UNKNOWN.

Finally, the “Time” column shows the time to generate I∗M|=Φ in seconds.

Times using no optimization (none), and using both optimizations (1+2) are
shown to demonstrate the impact of the optimization techniques. Note that in
our current implementation, we do not parallelize the calls to dReal, which could
lead to additional gains.

Table 2 shows the results from the SMC phase of osmosis. For each sample
problem, we show the results for target relative errors (RE) of 0.01 and 0.001.
At each target RE, we compare CMC with SIS using two different recursion
depth limits as shown in the Lmax/G column. The probability estimate for each
experiment is shown in the p̂ column. We see that the estimates for CMC and
SIS are very close for each problem, and that as expected the agreement for
those at a relative error of 0.001 are closest.

The column labeled N shows the number of samples needed to achieve the
target relative error for each experiment, and the column labeled N/N∗ shows
the improvement of SIS over CMC. We can see improvements ranging from a
factor of 5 to a factor of over 600. When we compare the measured N/N∗ to
the values predicted by 1/p∗ in Table 1, we see good agreement. For example, in
the “hockey” problem with a recursion depth of 10, we got 28.4 as the predicted
improvement, compared to measured improvements of 28.3 for a target RE of

13



7. CONCLUSION
Hansen, et. al.

Time (sec.)
Name RE Lmax/G p̂ N N/N∗ SMC total

simple

0.01

CMC 5.95× 10−4 1.68× 107 – 6 6
10/1 5.89× 10−4 8.95× 104 187 <0.1 0.1
12/1 6.03× 10−4 2.64× 104 636 <0.1 0.1

0.001

CMC 5.910× 10−4 1.69× 109 – 580 580
10/1 5.910× 10−4 8.92× 106 189 4 4.1
12/1 5.910× 10−4 2.72× 106 304 1 1.1

hockey

0.01

CMC 6.18× 10−4 1.58× 107 – 6.8 6.8
10/1 6.18× 10−4 5.59× 105 28.3 0.3 228.3
12/1 6.22× 10−4 1.74× 105 90.1 0.1 255.1

0.001

CMC 6.215× 10−4 1.61× 109 – 687 687
10/1 6.214× 10−4 5.56× 107 29.0 25 253
12/1 6.212× 10−4 1.74× 107 92.5 8 263

backoff

0.01

CMC 1.21× 10−4 8.24× 107 – 25 25
10/4 1.20× 10−4 1.50× 107 5.5 6 20
12/4 1.21× 10−4 1.50× 107 5.5 6 34

0.001

CMC 1.193× 10−4 8.38× 109 – 2,593 2,593
10/4 1.190× 10−4 1.51× 109 5.5 553 567
12/4 1.194× 10−4 1.50× 109 5.6 543 571

bounce

0.01

CMC 2.96× 10−5 3.337× 108 – 133 133
10/4 3.00× 10−5 8.464× 106 39 4.1 57.1
12/4 2.97× 10−5 4.104× 106 81 2.0 86.1

0.001

CMC 2.989× 10−5 3.345× 1010 – 13,619 13,619
10/4 2.993× 10−5 8.474× 108 39.5 432 485
12/4 2.994× 10−5 4.068× 108 82 209 293

Table 2. SMC Results; RE = RE(p̂)=target relative error; G=grouping factor.

0.01 and 29.0 for a target RE of 0.001. Note our predictor is based on the
assumption that p∗ � p, and so is slightly less accurate for examples such as
“simple” where this does not hold.

That last two columns show the verification time for the SMC phase alone,
and for the total time including the abstract indicator function generation time
shown in Table 1. We see that SIS outperforms CMC in all cases where verifica-
tion is expensive, often by an order of magnitude or more. Also since the cost for
generating the abstract indicator function is fixed regardless of the target RE,
there will always be some target RE for which SIS outperforms CMC.

7 Conclusion

Statistical model checking (SMC) is a prominent approach for rigorous analysis
of stochastic systems using Monte-Carlo simulations. In this paper, we devel-
oped a new technique, called Semantic Importance Sampling (SIS), to advance
the state-of-the art in applying SMC to compute the probability of a rare event
using a small number of simulations. SIS uses the semantics of the target system
to recursively compute an abstract indicator function (AIF), which is subse-

14



Hansen, et. al.

7. CONCLUSION

quently employed to perform SMC. We also present two optimizations to SIS
that reduce the number of calls to SMT solvers needed to compute the AIF.
We have implemented SIS in a tool called osmosis, and experimented with a
number of examples. Our results indicate that SIS reduces cost of SMC by or-
ders of magnitude, and our optimizations, in combination, reduce the cost of
SMT solving by half. We believe that extending SIS to analyze stochastic sys-
tems compositionally, and combining it with symbolic simulation techniques, are
important directions for future research.

References

1. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Proc. of TACAS. Springer (2012)

2. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems.
In: Proc. of ATVA (2011)

3. Daniel Reijsbergen, e.a.: Rare event simulation for highly dependable systems with
fast repairs. In: Proceedings of the 7th International Conference on Quantitative
Evaluation of Systems (2010)

4. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M.: Optimizing Control
Strategy Using Statistical Model Checking. In: Proc. of NFM (2013)

5. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Proc. of CAV (2011)

6. Gao, S., Kong, S., Clarke, E.: dReal: An SMT Solver for Nonlinear Theories over
the Reals. In: Proc. of CADE (2013)

7. Gurfinkel, A., Chaki, S.: BOXES: A Symbolic Abstract Domain of Boxes. In: Proc.
of SAS (2010)

8. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5), 512–535 (December 1994)

9. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Computer Aided Verifica-
tion. Lecture Notes in Computer Science (2012)

10. Jégourel, C., Legay, A., Sedwards, S.: Importance Splitting for Statistical Model
Checking Rare Properties. In: Proc. of CAV (2013)

11. Kahn, H.: Stochastic (monte carlo) attenuation analysis. Tech. Rep. P-88, Rand
Corp. (1949)

12. Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
Proc. of ASE (2014)

13. Mateus Borges, e.a.: Compositional solution space quantification for probabilistics
software analysis. In: Proceedings of PLDI: Programming Language Design and
Implementation (June 2014)

14. Srinivasan, R.: Importance Sampling: Applications in Communications and Detec-
tion. Engineering online library, Springer (2002)

15. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric
systems. Ph.D. thesis, University of Nijmegen, the Netherlands (2002)

16. Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon University (2004)

17. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

15


